kernel_weights function

Distance-based Kernel Spatial Weights

Distance-based Kernel Spatial Weights

Create a kernel weights by specifying a bandwidth and a kernel method

kernel_weights( sf_obj, bandwidth, kernel_method, use_kernel_diagonals = FALSE, power = 1, is_inverse = FALSE, is_arc = FALSE, is_mile = TRUE )

Arguments

  • sf_obj: An sf (simple feature) object
  • bandwidth: A positive numeric value of bandwidth
  • kernel_method: a string value, which has to be one of 'triangular', 'uniform', 'epanechnikov', 'quartic', 'gaussian'
  • use_kernel_diagonals: (optional) FALSE (default) or TRUE, apply kernel on the diagonal of weights matrix
  • power: (optional) The power (or exponent) of a number says how many times to use the number in a multiplication.
  • is_inverse: (optional) FALSE (default) or TRUE, apply inverse on distance value
  • is_arc: (optional) FALSE (default) or TRUE, compute arc distance between two observations
  • is_mile: (optional) TRUE (default) or FALSE, convert distance unit from mile to km.

Returns

An instance of Weight-class

Examples

library(sf) guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda") guerry <- st_read(guerry_path) bandwidth <- min_distthreshold(guerry) kernel_w <- kernel_weights(guerry, bandwidth, kernel_method = "uniform") summary(kernel_w)