local_multiquantilelisa function

Multivariate Quantile LISA Statistics

Multivariate Quantile LISA Statistics

The function to apply multivariate quantile LISA statistics

local_multiquantilelisa( w, df, k, q, permutations = 999, permutation_method = "complete", significance_cutoff = 0.05, cpu_threads = 6, seed = 123456789 )

Arguments

  • w: An instance of Weight object
  • df: A data frame with selected variables only. E.g. guerry[c("TopCrm", "TopWealth", "TopLit")]
  • k: A vector of "k" values indicate the number of quantiles for each variable. Value range e.g. [1, 10]
  • q: A vector of "q" values indicate which quantile or interval for each variable used in local join count statistics. Value stars from 1.
  • permutations: (optional) The number of permutations for the LISA computation
  • permutation_method: (optional) The permutation method used for the LISA computation. Options are ('complete', 'lookup'). Default is 'complete'.
  • significance_cutoff: (optional) A cutoff value for significance p-values to filter not-significant clusters
  • cpu_threads: (optional) The number of cpu threads used for parallel LISA computation
  • seed: (optional) The seed for random number generator

Returns

An instance of LISA-class

Examples

library(sf) guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda") guerry <- st_read(guerry_path) queen_w <- queen_weights(guerry) lisa <- local_multiquantilelisa(queen_w, guerry[c("Crm_prp", "Litercy")], k=c(4,4), q=c(1,1)) clsts <- lisa_clusters(lisa) clsts