serosv1.1.0 package

Model Infectious Disease Parameters from Serosurveys

compare_models

Compare models

compute_ci.fp_model

Compute confidence interval for fractional polynomial model

compute_ci.lp_model

Compute confidence interval for local polynomial model

compute_ci.mixture_model

Compute confidence interval for mixture model

compute_ci.penalized_spline_model

Compute confidence interval for penalized_spline_model

compute_ci

Compute confidence interval

compute_ci.weibull_model

Compute confidence interval for Weibull model

correct_prevalence

Estimate the true sero prevalence using Bayesian estimation

est_foi

Estimate force of infection

estimate_from_mixture

Estimate seroprevalence and foi by combining mixture model and regress...

farrington_model

The Farrington (1990) model.

find_best_fp_powers

Returns the powers of the GLM fitted model which has the lowest devian...

fp_model

A fractional polynomial model.

hierarchical_bayesian_model

Hierarchical Bayesian Model

lp_model

A local polynomial model.

mixture_model

Fit a mixture model to classify serostatus

mseir_model

MSEIR model

pava

Monotonize seroprevalence

penalized_spline_model

Penalized Spline model

plot_gcv

Plotting GCV values with respect to different nn-s and h-s parameters.

plot.estimate_from_mixture

plot() overloading for result of estimate_from_mixture

plot.farrington_model

plot() overloading for Farrington model

plot.fp_model

plot() overloading for fractional polynomial model

plot.hierarchical_bayesian_model

plot() overloading for hierarchical_bayesian_model

plot.lp_model

plot() overloading for local polynomial model

plot.mixture_model

plot() overloading for mixture model

plot.mseir_model

plot() overloading for MSEIR model

plot.penalized_spline_model

plot() overloading for penalized spline

plot.polynomial_model

plot() overloading for polynomial model

plot.sir_basic_model

plot() overloading for SIR model

plot.sir_static_model

plot() overloading for SIR static model

plot.sir_subpops_model

plot() overloading for SIR sub populations model

plot.weibull_model

plot() overloading for Weibull model

polynomial_model

Polynomial models

serosv-package

serosv: model infectious disease parameters

set_plot_style

Helper to adjust styling of a plot

sir_basic_model

Basic SIR model

sir_static_model

SIR static model (age-heterogeneous, endemic equilibrium)

sir_subpops_model

SIR Model with Interacting Subpopulations

transform_data

Generate a dataframe with t, pos and tot columns from t and `s...

weibull_model

The Weibull model.

An easy-to-use and efficient tool to estimate infectious diseases parameters using serological data. Implemented models include SIR models (basic_sir_model(), static_sir_model(), mseir_model(), sir_subpops_model()), parametric models (polynomial_model(), fp_model()), nonparametric models (lp_model()), semiparametric models (penalized_splines_model()), hierarchical models (hierarchical_bayesian_model()). The package is based on the book "Modeling Infectious Disease Parameters Based on Serological and Social Contact Data: A Modern Statistical Perspective" (Hens, Niel & Shkedy, Ziv & Aerts, Marc & Faes, Christel & Damme, Pierre & Beutels, Philippe., 2013) <doi:10.1007/978-1-4614-4072-7>.

  • Maintainer: Anh Phan Truong Quynh
  • License: MIT + file LICENSE
  • Last published: 2025-04-09