An implementation to minimize approximate power stress by majorization with ratio or interval optimal scaling. This approximates the power stress objective in such a way that it can be fitted with SMACOF without distance transformations. See Rusch et al. (2021) for details.
apStressMin( delta, kappa =1, lambda =1, nu =1, type ="ratio", weightmat =1- diag(nrow(delta)), init =NULL, ndim =2, acc =1e-06, itmax =10000, verbose =FALSE, principal =FALSE)apowerstressMin( delta, kappa =1, lambda =1, nu =1, type ="ratio", weightmat =1- diag(nrow(delta)), init =NULL, ndim =2, acc =1e-06, itmax =10000, verbose =FALSE, principal =FALSE)apostmds( delta, kappa =1, lambda =1, nu =1, type ="ratio", weightmat =1- diag(nrow(delta)), init =NULL, ndim =2, acc =1e-06, itmax =10000, verbose =FALSE, principal =FALSE)apstressMin( delta, kappa =1, lambda =1, nu =1, type ="ratio", weightmat =1- diag(nrow(delta)), init =NULL, ndim =2, acc =1e-06, itmax =10000, verbose =FALSE, principal =FALSE)apstressmds( delta, kappa =1, lambda =1, nu =1, type ="ratio", weightmat =1- diag(nrow(delta)), init =NULL, ndim =2, acc =1e-06, itmax =10000, verbose =FALSE, principal =FALSE)
Arguments
delta: dist object or a symmetric, numeric data.frame or matrix of distances
kappa: power of the transformation of the fitted distances; defaults to 1
lambda: the power of the transformation of the proximities; defaults to 1
nu: the power of the transformation for weightmat; defaults to 1
type: what type of MDS to fit. Only "ratio" currently.
weightmat: a binary matrix of finite nonegative weights.
init: starting configuration
ndim: dimension of the configuration; defaults to 2
acc: numeric accuracy of the iteration. Default is 1e-6.
itmax: maximum number of iterations. Default is 10000.
verbose: should iteration output be printed; if > 1 then yes
principal: If 'TRUE', principal axis transformation is applied to the final configuration
Returns
a 'smacofP' object (inheriting from 'smacofB', see smacofSym). It is a list with the components