smacofx1.22-0 package

Flexible Multidimensional Scaling and 'smacof' Extensions

alignplot

Function to plot Procrustes aligned MDS configurations

alscal

ALSCAL - MDS via S-Stress Minimization

apStressMin

Approximate Power Stress MDS

bcmds

Box-Cox MDS

bcsdistance

Calculates the blended Chi-square distance matrix between n vectors

biplotmds.bcmds

S3 method for bcmds objects

biplotmds.lmds

S3 method for lmds objects

biplotmds.smacofP

S3 method for smacofP objects

bootmds.smacofP

MDS Bootstrap for smacofP objects

clca

Curvilinear Component Analysis (CLCA)

clda

Curvilinear Distance Analysis (CLDA)

cmds

Classical Scaling

cmdscale

Wrapper to cmdscale for S3 class

conf_adjust

conf_adjust: a function to procrustes adjust two matrices

doubleCenter

Double centering of a matrix

elscal

Elastic Scaling SMACOF

enorm

Explicit Normalization Normalizes distances

icExploreGen

Exploring initial configurations in an agnostic way

jackmds.smacofP

MDS Jackknife for smacofP objects

lmds

Local MDS

mkBmat

Auxfunction1

mkPower

Take matrix to a power

multiscale

Multiscale SMACOF

multistart

Multistart MDS function

opmds

Nonlinear ratio MDS with optimal power of dissimilarities

pdist

Squared p-distances

permtest.smacofP

Permutation test for smacofP objects

plot.smacofP

S3 plot method for smacofP objects

powerStressFast

Power stress minimization by NEWUOA (nloptr)

powerStressMin

Power Stress SMACOF

procruster

procruster: a procrustes function

rpowerStressMin

Restricted Power Stress SMACOF

rStressMin

R stress SMACOF

sammon

Wrapper to sammon for S3 class

sammonmap

Sammon Mapping SMACOF

scale_adjust

Adjusts a configuration

secularEq

Secular Equation

smacofx-package

smacofx: Flexible multidimensional scaling methods and SMACOF extensio...

smacofxDeleteOne

Helper function to conduct jackknife MDS

spmdda

Extended Curvilinear (Power) Distance Analysis (eCLPDA or eCLDA) aka S...

spmds

Extended Curvilinear (Power) Component Analysis aka Sparsified (POST-)...

spp

Calculating stress per point

sqdist

Squared distances

Flexible multidimensional scaling (MDS) methods and extensions to the package 'smacof'. This package contains various functions, wrappers, methods and classes for fitting, plotting and displaying a large number of different flexible MDS models. These are: Torgerson scaling (Torgerson, 1958, ISBN:978-0471879459) with powers, Sammon mapping (Sammon, 1969, <doi:10.1109/T-C.1969.222678>) with ratio and interval optimal scaling, Multiscale MDS (Ramsay, 1977, <doi:10.1007/BF02294052>) with ratio and interval optimal scaling, s-stress MDS (ALSCAL; Takane, Young & De Leeuw, 1977, <doi:10.1007/BF02293745>) with ratio and interval optimal scaling, elastic scaling (McGee, 1966, <doi:10.1111/j.2044-8317.1966.tb00367.x>) with ratio and interval optimal scaling, r-stress MDS (De Leeuw, Groenen & Mair, 2016, <https://rpubs.com/deleeuw/142619>) with ratio, interval, splines and nonmetric optimal scaling, power-stress MDS (POST-MDS; Buja & Swayne, 2002 <doi:10.1007/s00357-001-0031-0>) with ratio and interval optimal scaling, restricted power-stress (Rusch, Mair & Hornik, 2021, <doi:10.1080/10618600.2020.1869027>) with ratio and interval optimal scaling, approximate power-stress with ratio optimal scaling (Rusch, Mair & Hornik, 2021, <doi:10.1080/10618600.2020.1869027>), Box-Cox MDS (Chen & Buja, 2013, <https://jmlr.org/papers/v14/chen13a.html>), local MDS (Chen & Buja, 2009, <doi:10.1198/jasa.2009.0111>), curvilinear component analysis (Demartines & Herault, 1997, <doi:10.1109/72.554199>), curvilinear distance analysis (Lee, Lendasse & Verleysen, 2004, <doi:10.1016/j.neucom.2004.01.007>), nonlinear MDS with optimal dissimilarity powers functions (De Leeuw, 2024, <https://github.com/deleeuw/smacofManual/blob/main/smacofPO(power)/smacofPO.pdf>), sparsified (power) MDS and sparsified multidimensional (power) distance analysis aka extended curvilinear (power) component analysis and extended curvilinear (power) distance analysis (Rusch, 2024, <doi:10.57938/355bf835-ddb7-42f4-8b85-129799fc240e>). Some functions are suitably flexible to allow any other sensible combination of explicit power transformations for weights, distances and input proximities with implicit ratio, interval, splines or nonmetric optimal scaling of the input proximities. Most functions use a Majorization-Minimization algorithm. Currently the methods are only available for one-mode two-way data (symmetric dissimilarity matrices).

  • Maintainer: Thomas Rusch
  • License: GPL-2 | GPL-3
  • Last published: 2025-09-18