sammonmap function

Sammon Mapping SMACOF

Sammon Mapping SMACOF

An implementation to minimize Sammon stress by majorization with ratio and interval optimal scaling. Uses a repeat loop.

sammonmap( delta, type = c("ratio", "interval"), weightmat, init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE )

Arguments

  • delta: dist object or a symmetric, numeric data.frame or matrix of distances
  • type: what type of MDS to fit. Currently one of "ratio" and "interval". Default is "ratio".
  • weightmat: a matrix of finite weights
  • init: starting configuration
  • ndim: dimension of the configuration; defaults to 2
  • acc: numeric accuracy of the iteration. Default is 1e-6.
  • itmax: maximum number of iterations. Default is 10000.
  • verbose: should iteration output be printed; if > 1 then yes
  • principal: If 'TRUE', principal axis transformation is applied to the final configuration

Returns

a 'smacofP' object (inheriting from smacofB, see smacofSym). It is a list with the components

  • delta: Observed dissimilarities
  • tdelta: Observed explicitly transformed dissimilarities, normalized
  • dhat: Observed dissimilarities (dhats), optimally scaled and normalized
  • confdist: Transformed configuration distances
  • conf: Matrix of fitted configuration
  • stress: Default stress (stress 1; sqrt of explicitly normalized stress)
  • spp: Stress per point (based on stress.en)
  • ndim: Number of dimensions
  • model: Name of smacof model
  • niter: Number of iterations
  • nobj: Number of objects
  • type: Type of MDS model
  • weightmat: weighting matrix as supplied
  • stress.m: default stress (stress-1^2)
  • tweightmat: weighting matrix atfer transformation (here weightmat/delta)

Examples

dis<-smacof::kinshipdelta res<-sammonmap(as.matrix(dis),itmax=1000) res summary(res) plot(res)

See Also

rStressMin