powerStressMin function

Power Stress SMACOF

Power Stress SMACOF

An implementation to minimize power stress by majorization with ratio or interval optimal scaling. Usually more accurate but slower than powerStressFast. Uses a repeat loop.

powerStressMin( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE ) powerstressMin( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE ) postmds( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE ) pstressMin( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE ) pStressMin( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE ) pstressmds( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE )

Arguments

  • delta: dist object or a symmetric, numeric data.frame or matrix of distances
  • kappa: power of the transformation of the fitted distances; defaults to 1
  • lambda: the power of the transformation of the proximities; defaults to 1
  • nu: the power of the transformation for weightmat; defaults to 1
  • type: what type of MDS to fit. One of "ratio" or "interval". Default is "ratio".
  • weightmat: a matrix of finite weights or dist object
  • init: starting configuration
  • ndim: dimension of the configuration; defaults to 2
  • acc: numeric accuracy of the iteration. Default is 1e-6.
  • itmax: maximum number of iterations. Default is 10000.
  • verbose: should iteration output be printed; if > 1 then yes
  • principal: If 'TRUE', principal axis transformation is applied to the final configuration

Returns

a 'smacofP' object (inheriting from 'smacofB', see smacofSym). It is a list with the components

  • delta: Observed, untransformed dissimilarities
  • tdelta: Observed explicitly transformed dissimilarities, normalized
  • dhat: Explicitly transformed dissimilarities (dhats), optimally scaled and normalized
  • confdist: Transformed fitted configuration distances
  • conf: Matrix of fitted configuration
  • stress: Default stress (stress 1; sqrt of explicitly normalized stress)
  • spp: Stress per point
  • ndim: Number of dimensions
  • model: Name of smacof model
  • niter: Number of iterations
  • nobj: Number of objects
  • type: Type of MDS model
  • weightmat: weighting matrix as supplied
  • stress.m: Default stress (stress-1^2)
  • tweightmat: transformed weighthingmatrix (here weightmat^nu)

Examples

dis<-smacof::kinshipdelta res<-powerStressMin(dis,type="ratio",kappa=2,lambda=1.5,itmax=1000) res summary(res) plot(res)

See Also

smacofSym