estcovparm function

Estimate Covariance Parameters

Estimate Covariance Parameters

Used to estimate spatial covariance parameters for a few different spatial models. Estimated parameters can then be used in predict.slmfit() to predict values at unobserved locations.

estcovparm( response, designmatrix, xcoordsvec, ycoordsvec, CorModel = "Exponential", estmethod = "REML", covestimates = c(NA, NA, NA) )

Arguments

  • response: a vector of a response variable, possibly with missing values.
  • designmatrix: is the matrix of covariates used to regress the response on.
  • xcoordsvec: is a vector of x coordinates
  • ycoordsvec: is a vector of y coordinates
  • CorModel: is the covariance structure. By default, CorModel is "Exponential" but other options are "Spherical" and "Gaussian".
  • estmethod: is either the default "REML" for restricted maximum likelihood to estimate the covariance parameters and regression coefficients or "ML" to estimate the covariance parameters and regression coefficients.
  • covestimates: is an optional vector of covariance parameter estimates (nugget, partial sill, range). If these are given and estmethod = "None", the the provided vector are treated as the estimators to create the covariance structure.

Returns

a list with

  • parms.est, a vector of estimated covariance parameters
  • Sigma, the fitted covariance matrix for all of the sites
  • qrV, the qr decomposition
  • b.hat, the vector of estimated fixed effect coefficients
  • covbi, the inverse of the covariance matrix for the fixed effects
  • covb, the covariance matrix for the fixed effects
  • min2loglik, minus two times the loglikelihood

Details

The function is a helper function used internally in predict.slmfit().

  • Maintainer: Matt Higham
  • License: GPL-2
  • Last published: 2022-12-11