sptotal1.0.1 package

Predicting Totals and Weighted Sums from Spatial Data

pointSimSyst

Creates a systematic grid of points.

m2LL.FPBK.nodet

Covariance Parameter Estimation Function.

mginv

Constructing the generalized inverse of a matrix

plot.predict.slmfit

Create a default map from predictions

plot.slmfit

Plot an Empirical Semi-Variogram of Residuals

pointSimCSR

simulate completely spatially random point patterns.

AIC.slmfit

Extract the AIC from a slmfit object for comparing models.

check.variogram-deprecated

Plot an Empirical Semi-Variogram of Residuals

coef.slmfit

Extract Model Coefficients from a slmfit object

corModelExponential

Spatial Correlation Models

estcovparm

Estimate Covariance Parameters

fitted.slmfit

Extract Fitted Values from an slmfit object.

geostatSim

Simulate geostatistical data on set of given locations

get.predinfo-deprecated

Display basic summary information in a tabular form.

get.predplot-deprecated

Create a default map from predictions

GR2

Computes the Generalized R-squared.

LLtoTM

Convert Lat and Long to Transverse Mercator (TM)

loglik.slmfit

Extract Log-Likelihood from a fitted class slmfit object

predict.slmfit

Perform Finite Population Block Kriging

predict.stratafit

Perform Finite Population Block Kriging

print.predict.slmfit

Prints a short summary for the predict.slmfit() function.

print.predict.stratafit

Prints a short summary for the predict.stratafit() function.

print.slmfit

Prints the fitted coefficient table of a fitted spatial linear model.

print.summary.slmfit

Prints the summary of a fitted spatial linear model.

residuals.slmfit

Extract Model Residuals from an slmfit object.

slmfit

Fits a Spatial Linear Model

sptotal

sptotal: A package used for performing Finite Population Block Kriging...

stratafit

Fits a Separate Spatial Linear Model for Each Stratum

summary.slmfit

Summarizes a fitted spatial linear model.

summary.stratafit

Summarizes a fitted spatial linear model with a stratification variabl...

sv

Semi-variogram computation

Performs predictions of totals and weighted sums, or finite population block kriging, on spatial data using the methods in Ver Hoef (2008) <doi:10.1007/s10651-007-0035-y>. The primary outputs are an estimate of the total, mean, or weighted sum in the region, an estimated prediction variance, and a plot of the predicted and observed values. This is useful primarily to users with ecological data that are counts or densities measured on some sites in a finite area of interest. Spatial prediction for the total count or average density in the entire region can then be done using the functions in this package.

  • Maintainer: Matt Higham
  • License: GPL-2
  • Last published: 2022-12-11