Simulate geostatistical data on set of given locations
Spatially correlated data are simulated assuming a multivariate normal random error vector. For simplicity, only "Exponential"
and "Spherical"
simulation options are given here.
geostatSim( loc.data, xcol = "x", ycol = "y", parsil = 1, range = 1, nugget = 0, minorp = 1, rotate = 90, extrap = NULL, CorModel = "Exponential" )
loc.data
: data.frame with x- and y-coordinates of locations for simulated dataxcol
: name of the column in loc.data with x-coordinates, default is "x"ycol
: name of the column loc.data with y-coordinates, default is "y"parsil
: partial sill of autocorrelation model, default = 1range
: range of autocorrelation model, default = 1nugget
: range of autocorrelation model, default = 0minorp
: proportion of range in x direction to that of y direction for unrotated anisotropic model, default = 1rotate
: rotation of anisotropic axes, default = 90extrap
: extra covariance parameterCorModel
: autocorrelation model, default = "Exponential". Other possibilities are "Spherical".data.frame of three columns, the original location data appended with a 3rd column of simulated geostatistical data
locations <- expand.grid(1:10, 1:10) geostatSim(locations, xcol = "Var1", ycol = "Var2", parsil = 4, range = 20, nugget = 1, CorModel = "Exponential")
Jay Ver Hoef