Allow regions of your code to run in mixed precision. In these regions, ops run in an op-specific dtype chosen by autocast to improve performance while maintaining accuracy.
device_type: a character string indicating whether to use 'cuda' or 'cpu' device
dtype: a torch data type indicating whether to use torch_float16() or torch_bfloat16().
enabled: a logical value indicating whether autocasting should be enabled in the region. Default: TRUE
cache_enabled: a logical value indicating whether the weight cache inside autocast should be enabled.
...: currently unused.
.env: The environment to use for scoping.
code: code to be executed with no gradient recording.
context: Returned by set_autocast and should be passed when unsetting it.
Details
When entering an autocast-enabled region, Tensors may be any type. You should not call half() or bfloat16() on your model(s) or inputs when using autocasting.
autocast should only be enabled during the forward pass(es) of your network, including the loss computation(s). Backward passes under autocast are not recommended. Backward ops run in the same type that autocast used for corresponding forward ops.
Functions
with_autocast(): A with context for automatic mixed precision.
set_autocast(): Set the autocast context. For advanced users only.
unset_autocast(): Unset the autocast context.
Examples
if(torch_is_installed()){x <- torch_randn(5,5, dtype = torch_float32())y <- torch_randn(5,5, dtype = torch_float32())foo <-function(x, y){ local_autocast(device ="cpu") z <- torch_mm(x, y) w <- torch_mm(z, x) w
}out <- foo(x, y)}
See Also
cuda_amp_grad_scaler() to perform dynamic gradient scaling.