Tensors and Neural Networks with 'GPU' Acceleration
Matrix_rank
Pdist
Randperm
Roll
Rot90
Round
Rrelu_
Rsqrt
Saves an object to a disk file.
Scalar tensor
Creates a tensor from a buffer of memory
Tensordot
Threshold_
Topk
Trace
Transpose
Trapz
Unique_consecutive
Unsafe_chunk
Unsafe_split
Unsqueeze
Vander
Add
Argmin
Argsort
Combinations
Complex
Conj
Conv_tbc
Det
Create a Device object
Diag
Divide
Dot
Dstack
Torch data types
Eig
In-place version of torch_index_put
.
Index_select
A simple exported version of install_path Returns the torch installati...
Inverse
Is_complex
Is_floating_point
Verifies if torch is installed
Is_nonzero
Logaddexp
Logaddexp2
Logcumsumexp
Logdet
Logical_and
Logical_not
Logical_or
Logical_xor
Logit
Sets the seed for generating random numbers.
Masked_select
Matmul
Matrix_exp
Matrix_power
Empty cache
Returns the major and minor CUDA capability of device
Returns a bool indicating if CUDA is currently available.
Returns a dictionary of CUDA memory allocator statistics for a given d...
Returns the CUDA runtime version
Waits for all kernels in all streams on a CUDA device to complete.
Data loader. Combines a dataset and a sampler, and provides single- or...
Creates an iterator from a DataLoader
Get the next element of a dataloader iterator
Saves a script_function
or script_module
in bytecode form, to be l...
Adds the 'jit_scalar' class to the input
Trace a function and return an executable script_function
.
Applies a 2D adaptive average pooling over an input signal composed of...
Applies a 3D adaptive average pooling over an input signal composed of...
AdaptiveLogSoftmaxWithLoss module
Applies a 1D adaptive max pooling over an input signal composed of sev...
Truncated normal initialization
Uniform initialization
Xavier normal initialization
Xavier uniform initialization
Zeros initialization
LogSigmoid module
LogSoftmax module
Threshold module
Adaptive_max_pool2d
Adaptive_max_pool3d
Affine_grid
Alpha_dropout
Avg_pool1d
Conv_tbc
Glu
Lp_pool2d
Margin_ranking_loss
Max_pool1d
Max_pool2d
Max_pool3d
Max_unpool1d
Max_unpool2d
Max_unpool3d
Mse_loss
One_hot
Smooth_l1_loss
Soft_margin_loss
Softmax
Softmin
Softplus
Softshrink
Softsign
Tanhshrink
Threshold
Acosh
Adaptive_avg_pool1d
MPS is available
OpenMP is available
Absolute
Greater
Greater_equal
Dataset wrapping tensors.
Acos
Dequantize
Log2
Negative
Unbind
Tanh module
Tanhshrink module
Adaptive_avg_pool3d
Saves a script_function
to a path
BatchNorm2D
BatchNorm3D
Erfc
Erfinv
Exp
Exp2
Expm1
Converts to array
MKLDNN is available
Qr
Creates the corresponding Scheme object
Computes the sum of gradients of given tensors w.r.t. graph leaves.
Records operation history and defines formulas for differentiating ops...
Computes and returns the sum of gradients of outputs w.r.t. the inputs...
Set grad mode
Class representing the context.
CuDNN is available
CuDNN version
MKL is available
Given a list of values (possibly containing numbers), returns a list w...
Call a (Potentially Unexported) Torch Function
Clone a torch module.
Abstract base class for constraints.
Contrib sort vertices
Creates a gradient scaler
Returns the index of a currently selected device.
Returns the number of GPUs available.
Helper function to create an function that generates R6 instances of c...
Dataset Subset
Gets and sets the default floating point dtype.
Creates a Bernoulli distribution parameterized by probs
or logits
(...
Creates a categorical distribution parameterized by either probs
or ...
Creates a Chi2 distribution parameterized by shape parameter df
. Thi...
Creates a Gamma distribution parameterized by shape concentration
an...
Mixture of components in the same family
Gaussian distribution
Creates a normal (also called Gaussian) distribution parameterized by ...
Creates a Poisson distribution parameterized by rate
, the rate param...
Generic R6 class representing distributions
Enumerate an iterator
Enumerate an iterator
Install Torch
Install Torch from files
Checks if the object is a dataloader
Checks if the object is a nn_buffer
Checks if the object is an nn_module
Checks if an object is a nn_parameter
Checks if the object is a torch optimizer
Checks if object is a device
Check if object is a torch data type
Check if an object is a torch layout.
Check if an object is a memory format
Checks if an object is a QScheme
Checks if a tensor is undefined
Creates an iterable dataset
Compile TorchScript code into a graph
Loads a script_function
or script_module
previously saved with `ji...
Enable idiomatic access to JIT operators from R.
Trace a module
Adds the 'jit_tuple' class to the input
Computes the Cholesky decomposition of a complex Hermitian or real sym...
Computes the Cholesky decomposition of a complex Hermitian or real sym...
Computes the condition number of a matrix with respect to a matrix nor...
Computes the determinant of a square matrix.
Computes the eigenvalue decomposition of a square matrix if it exists.
Computes the eigenvalue decomposition of a complex Hermitian or real s...
Computes the eigenvalues of a square matrix.
Computes the eigenvalues of a complex Hermitian or real symmetric matr...
Computes the first n
columns of a product of Householder matrices.
Hardsigmoid module
Computes the inverse of a square matrix if it exists.
Computes the inverse of a square matrix if it is invertible.
Computes a solution to the least squares problem of a system of linear...
Computes a matrix norm.
Computes the n
-th power of a square matrix for an integer n
.
Hardswish module
Computes the numerical rank of a matrix.
Efficiently multiplies two or more matrices
Computes a vector or matrix norm.
Computes the pseudoinverse (Moore-Penrose inverse) of a matrix.
Computes the QR decomposition of a matrix.
Hardtanh module
Computes the sign and natural logarithm of the absolute value of the d...
Computes the solution of a square system of linear equations with a un...
Triangular solve
Computes the singular value decomposition (SVD) of a matrix.
Computes the singular values of a matrix.
Computes the multiplicative inverse of torch_tensordot()
Computes the solution X
to the system torch_tensordot(A, X) = B
.
Computes a vector norm.
Load a state dict file
Autocast context manager
Device contexts
Set the learning rate of each parameter group using a cosine annealing...
Ones initialization
Sets the learning rate of each parameter group to the initial lr times...
Multiply the learning rate of each parameter group by the factor given...
Once cycle learning rate
Reduce learning rate on plateau
Creates learning rate schedulers
Step learning rate decay
Applies a 1D adaptive average pooling over an input signal composed of...
Applies a 2D adaptive max pooling over an input signal composed of sev...
Applies a 3D adaptive max pooling over an input signal composed of sev...
Applies a 1D average pooling over an input signal composed of several ...
Applies a 2D average pooling over an input signal composed of several ...
Applies a 3D average pooling over an input signal composed of several ...
BatchNorm1D module
Binary cross entropy loss
BCE with logits loss
Bilinear module
Creates a nn_buffer
CELU module
Sparsemax activation
ConvTranspose1D
ConvTranpose2D module
ConvTranpose3D module
Conv1D module
Conv2D module
Conv3D module
Adaptive_max_pool1d
Cosine embedding loss
CrossEntropyLoss module
The Connectionist Temporal Classification loss.
Dropout module
Dropout2D module
Orthogonal initialization
Dropout3D module
ELU module
Embedding module
Embedding bag module
Flattens a contiguous range of dims into a tensor.
Sparse initialization
Applies a 2D fractional max pooling over an input signal composed of s...
Applies a 3D fractional max pooling over an input signal composed of s...
GELU module
GLU module
Group normalization
Applies a multi-layer gated recurrent unit (GRU) RNN to an input seque...
Hardshwink module
Hinge embedding loss
Identity module
Calculate gain
Constant initialization
Dirac initialization
Eye initialization
Kaiming normal initialization
Kaiming uniform initialization
Normal initialization
Kullback-Leibler divergence loss
L1 loss
Layer normalization
LeakyReLU module
Linear module
Ceil
Applies a 1D power-average pooling over an input signal composed of se...
Applies a 2D power-average pooling over an input signal composed of se...
Applies a multi-layer long short-term memory (LSTM) RNN to an input se...
Margin ranking loss
MaxPool1D module
Softsign module
MaxPool2D module
Applies a 3D max pooling over an input signal composed of several inpu...
Computes a partial inverse of MaxPool1d
.
Computes a partial inverse of MaxPool2d
.
Computes a partial inverse of MaxPool3d
.
Base class for all neural network modules.
Container that allows named values
Holds submodules in a list.
MSE loss
Multi margin loss
Applies the Sigmoid Linear Unit (SiLU) function, element-wise. The SiL...
Celu
MultiHead attention
Multilabel margin loss
Multi label soft margin loss
Nll loss
Pairwise distance
Creates an nn_parameter
Poisson NLL loss
PReLU module
Prune top layer(s) of a network
ReLU module
ReLu6 module
RNN module
RReLU module
SELU module
A sequential container
Sigmoid module
Celu_
Smooth L1 loss
Soft margin loss
Softmax module
Softmax2d module
Softmin
Softplus module
Softshrink module
Triplet margin loss
Triplet margin with distance loss
Unflattens a tensor dim expanding it to a desired shape. For use with ...
Upsample module
Clips gradient norm of an iterable of parameters.
Clips gradient of an iterable of parameters at specified value.
Packs a Tensor containing padded sequences of variable length.
Packs a list of variable length Tensors
Pads a packed batch of variable length sequences.
Pad a list of variable length Tensors with padding_value
nn_utils_weight_norm
Adaptive_avg_pool1d
Adaptive_avg_pool2d
Avg_pool2d
Avg_pool3d
Batch_norm
Bilinear
Binary_cross_entropy
Binary_cross_entropy_with_logits
Celu
Sparsemax
Conv_transpose1d
Conv_transpose2d
Conv_transpose3d
Conv1d
Conv2d
Conv3d
Elu
Cosine_embedding_loss
Cosine_similarity
Cross_entropy
Ctc_loss
Dropout
Dropout2d
Dropout3d
Sigmoid
Embedding
Embedding_bag
Fold
Fractional_max_pool2d
Fractional_max_pool3d
Gelu
Outer
Grid_sample
Group_norm
Gumbel_softmax
Hardshrink
Hardsigmoid
Hardswish
Hardtanh
Hinge_embedding_loss
Instance_norm
Applies the Sigmoid Linear Unit (SiLU) function, element-wise. See `nn...
Interpolate
Kl_div
L1_loss
Layer_norm
Leaky_relu
Linear
Local_response_norm
Log_softmax
Logsigmoid
Lp_pool1d
Multi head attention forward
Multi_margin_loss
Multilabel_margin_loss
Multilabel_soft_margin_loss
Nll_loss
Normalize
Number of threads
Pad
Pairwise_distance
Pdist
Pixel_shuffle
Poisson_nll_loss
Prelu
Relu
Relu6
Rrelu
Selu
Triplet_margin_loss
Triplet margin with distance loss
Unfold
Adadelta optimizer
Adagrad optimizer
Abs
Implements Adam algorithm.
Implements AdamW algorithm
Averaged Stochastic Gradient Descent optimizer
LBFGS optimizer
Dummy value indicating a required value.
Creates a new Sampler
RMSprop optimizer
Implements the resilient backpropagation algorithm.
SGD optimizer
Creates a custom optimizer
Pipe operator
Re-exporting the as_iterator function.
Creates a slice
Addbmm
Addcdiv
Addcmul
Addmm
Addmv
Addr
Allclose
Amax
Amin
Angle
Arange
Arccos
Arccosh
Arcsin
Arcsinh
Arctan
Arctanh
Argmax
As_strided
Asin
Asinh
Atan
Atan2
Atanh
Atleast_1d
Atleast_2d
Atleast_3d
Avg_pool1d
Chain_matmul
Baddbmm
Bartlett_window
Bernoulli
Bincount
Bitwise_and
Bitwise_not
Bitwise_or
Bitwise_xor
Channel_shuffle
Blackman_window
Block_diag
Bmm
Broadcast_tensors
Bucketize
Can_cast
Cartesian_prod
Cat
Cdist
Cholesky
Cholesky_inverse
Cholesky_solve
Chunk
Clamp
Clip
Clone
Deg2rad
Conv_transpose1d
Conv_transpose2d
Conv_transpose3d
Conv1d
Conv2d
Conv3d
Cos
Cosh
Cosine_similarity
Count_nonzero
Cross
Cummax
Cummin
Cumprod
Cumsum
Diag_embed
Diagflat
Diagonal
Computes the n-th forward difference along the given dimension.
Digamma
Dist
Div
Einsum
Empty
Empty_like
Empty_strided
Eq
Equal
Erf
Eye
Fft
fftfreq
Ifft
Irfft
Gt
Rfft
Floating point type info
Fix
Flatten
Flip
Fliplr
Flipud
Floor
Floor_divide
Fmod
Frac
RNG state management
Full
Full_like
Gather
Gcd
Ge
Create a Generator object
Geqrf
Ger
Hamming_window
Hann_window
Heaviside
Histc
Hstack
Hypot
I0
Integer type info
Imag
Index torch tensors
Modify values selected by indices
.
Isclose
Isfinite
Isinf
Isnan
Isneginf
Isposinf
Isreal
Istft
Kaiser_window
Kronecker product
Log1p
Kthvalue
Creates the corresponding layout
Lcm
Le
Lerp
Less
Less_equal
Lgamma
Linspace
Loads a saved object
Log
Log10
Logspace
Logsumexp
Lstsq
Lt
LU
Lu_solve
Lu_unpack
Max
Maximum
Mean
Median
Memory format
Meshgrid
Nextafter
Result_type
Min
Minimum
Mm
Mode
Movedim
Mul
Nonzero
Multinomial
Multiply
Mv
Mvlgamma
Nanquantile
Nansum
Narrow
Ne
Neg
Norm
Normal
Not_equal
Ones
Ones_like
Orgqr
Ormqr
Tanh
Pinverse
Pixel_shuffle
Poisson
Polar
Polygamma
Pow
Prod
Promote_types
Quantile
Quantize_per_channel
Quantize_per_tensor
Rad2deg
Rand
Rand_like
Randint
Randint_like
Randn
Randn_like
Range
Real
Reciprocal
Creates the reduction objet
Relu
Relu_
Remainder
Renorm
Repeat_interleave
Reshape
Searchsorted
Selu
Selu_
Serialize a torch object returning a raw object
Sgn
Sigmoid
Sign
Signbit
Sin
Sinh
Slogdet
Sort
Converts R objects to a torch tensor
Sparse_coo_tensor
Split
Sqrt
Square
Squeeze
Stack
Std
Std_mean
Stft
Sub
Subtract
Sum
Svd
T
Take
Tan
Triangular_solve
Tril
Tril_indices
Triu
Triu_indices
TRUE_divide
Trunc
Var
Var_mean
Vdot
View_as_complex
View_as_real
Vstack
Where
Zeros
Zeros_like
Context-manager that enable anomaly detection for the autograd engine.
Enable grad
Temporarily modify gradient recording.
Provides functionality to define and train neural networks similar to 'PyTorch' by Paszke et al (2019) <doi:10.48550/arXiv.1912.01703> but written entirely in R using the 'libtorch' library. Also supports low-level tensor operations and 'GPU' acceleration.
Useful links