nn_mse_loss function

MSE loss

MSE loss

Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input xx and target yy. The unreduced (i.e. with reduction set to 'none') loss can be described as:

nn_mse_loss(reduction = "mean")

Arguments

  • reduction: (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed.

Details

(x,y)=L={l1,,lN},\quadln=(xnyn)2, \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quadl_n = \left( x_n - y_n \right)^2,

where NN is the batch size. If reduction is not 'none'

(default 'mean'), then:

(x,y)=\mboxmean(L),\mboxifreduction=\mboxmean;\mboxsum(L),\mboxifreduction=\mboxsum. \ell(x, y) =\begin{array}{ll}\mbox{mean}(L), & \mbox{if reduction} = \mbox{'mean';}\\\mbox{sum}(L), & \mbox{if reduction} = \mbox{'sum'.}\end{array}

xx and yy are tensors of arbitrary shapes with a total of nn elements each.

The mean operation still operates over all the elements, and divides by nn. The division by nn can be avoided if one sets reduction = 'sum'.

Shape

  • Input: (N,)(N, *) where * means, any number of additional dimensions
  • Target: (N,)(N, *), same shape as the input

Examples

if (torch_is_installed()) { loss <- nn_mse_loss() input <- torch_randn(3, 5, requires_grad = TRUE) target <- torch_randn(3, 5) output <- loss(input, target) output$backward() }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14