torch_conv_transpose1d function

Conv_transpose1d

Conv_transpose1d

torch_conv_transpose1d( input, weight, bias = list(), stride = 1L, padding = 0L, output_padding = 0L, groups = 1L, dilation = 1L )

Arguments

  • input: input tensor of shape (\mboxminibatch,\mboxin_channels,iW)(\mbox{minibatch} , \mbox{in\_channels} , iW)
  • weight: filters of shape (\mboxin_channels,\mboxout_channels\mboxgroups,kW)(\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kW)
  • bias: optional bias of shape (\mboxout_channels)(\mbox{out\_channels}). Default: NULL
  • stride: the stride of the convolving kernel. Can be a single number or a tuple (sW,). Default: 1
  • padding: dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padW,). Default: 0
  • output_padding: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple (out_padW). Default: 0
  • groups: split input into groups, \mboxin_channels\mbox{in\_channels} should be divisible by the number of groups. Default: 1
  • dilation: the spacing between kernel elements. Can be a single number or a tuple (dW,). Default: 1

conv_transpose1d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".

See nn_conv_transpose1d() for details and output shape.

Examples

if (torch_is_installed()) { inputs = torch_randn(c(20, 16, 50)) weights = torch_randn(c(16, 33, 5)) nnf_conv_transpose1d(inputs, weights) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14