nn_max_pool1d function

MaxPool1D module

MaxPool1D module

Applies a 1D max pooling over an input signal composed of several input planes.

nn_max_pool1d( kernel_size, stride = NULL, padding = 0, dilation = 1, return_indices = FALSE, ceil_mode = FALSE )

Arguments

  • kernel_size: the size of the window to take a max over
  • stride: the stride of the window. Default value is kernel_size
  • padding: implicit zero padding to be added on both sides
  • dilation: a parameter that controls the stride of elements in the window
  • return_indices: if TRUE, will return the max indices along with the outputs. Useful for nn_max_unpool1d() later.
  • ceil_mode: when TRUE, will use ceil instead of floor to compute the output shape

Details

In the simplest case, the output value of the layer with input size (N,C,L)(N, C, L)

and output (N,C,Lout)(N, C, L_{out}) can be precisely described as:

out(Ni,Cj,k)=maxm=0,,\mboxkernel_size1input(Ni,Cj,stride×k+m) out(N_i, C_j, k) = \max_{m=0, \ldots, \mbox{kernel\_size} - 1}input(N_i, C_j, stride \times k + m)

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link

has a nice visualization of what dilation does.

Shape

  • Input: (N,C,Lin)(N, C, L_{in})
  • Output: (N,C,Lout)(N, C, L_{out}), where
Lout=Lin+2×\mboxpadding\mboxdilation×(\mboxkernel_size1)1\mboxstride+1 L_{out} = \left\lfloor \frac{L_{in} + 2 \times \mbox{padding} - \mbox{dilation}\times (\mbox{kernel\_size} - 1) - 1}{\mbox{stride}} + 1\right\rfloor

Examples

if (torch_is_installed()) { # pool of size=3, stride=2 m <- nn_max_pool1d(3, stride = 2) input <- torch_randn(20, 16, 50) output <- m(input) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14