nnf_cosine_embedding_loss function

Cosine_embedding_loss

Cosine_embedding_loss

Creates a criterion that measures the loss given input tensors x_1, x_2 and a Tensor label y with values 1 or -1. This is used for measuring whether two inputs are similar or dissimilar, using the cosine distance, and is typically used for learning nonlinear embeddings or semi-supervised learning.

nnf_cosine_embedding_loss( input1, input2, target, margin = 0, reduction = c("mean", "sum", "none") )

Arguments

  • input1: the input x_1 tensor
  • input2: the input x_2 tensor
  • target: the target tensor
  • margin: Should be a number from -1 to 1 , 0 to 0.5 is suggested. If margin is missing, the default value is 0.
  • reduction: (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14