nn_embedding_bag function

Embedding bag module

Embedding bag module

Computes sums, means or maxes of bags of embeddings, without instantiating the intermediate embeddings.

nn_embedding_bag( num_embeddings, embedding_dim, max_norm = NULL, norm_type = 2, scale_grad_by_freq = FALSE, mode = "mean", sparse = FALSE, include_last_offset = FALSE, padding_idx = NULL, .weight = NULL )

Arguments

  • num_embeddings: (int): size of the dictionary of embeddings

  • embedding_dim: (int): the size of each embedding vector

  • max_norm: (float, optional): If given, each embedding vector with norm larger than max_norm

    is renormalized to have norm max_norm.

  • norm_type: (float, optional): The p of the p-norm to compute for the max_norm option. Default 2

  • scale_grad_by_freq: (boolean, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False.

  • mode: (string, optional): "sum", "mean" or "max". Specifies the way to reduce the bag. "sum" computes the weighted sum, taking per_sample_weights into consideration. "mean" computes the average of the values in the bag, "max" computes the max value over each bag.

  • sparse: (bool, optional): If True, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for more details regarding sparse gradients.

  • include_last_offset: (bool, optional): if True, offsets has one additional element, where the last element is equivalent to the size of indices. This matches the CSR format.

  • padding_idx: (int, optional): If given, pads the output with the embedding vector at padding_idx

    (initialized to zeros) whenever it encounters the index.

  • .weight: (Tensor, optional) embeddings weights (in case you want to set it manually)

Attributes

  • weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from N(0,1)\mathcal{N}(0, 1)

Examples

if (torch_is_installed()) { # an EmbeddingBag module containing 10 tensors of size 3 embedding_sum <- nn_embedding_bag(10, 3, mode = 'sum') # a batch of 2 samples of 4 indices each input <- torch_tensor(c(1, 2, 4, 5, 4, 3, 2, 9), dtype = torch_long()) offsets <- torch_tensor(c(0, 4), dtype = torch_long()) embedding_sum(input, offsets) # example with padding_idx embedding_sum <- nn_embedding_bag(10, 3, mode = 'sum', padding_idx = 1) input <- torch_tensor(c(2, 2, 2, 2, 4, 3, 2, 9), dtype = torch_long()) offsets <- torch_tensor(c(0, 4), dtype = torch_long()) embedding_sum(input, offsets) # An EmbeddingBag can be loaded from an Embedding like so embedding <- nn_embedding(10, 3, padding_idx = 2) embedding_sum <- nn_embedding_bag$from_pretrained(embedding$weight, padding_idx = embedding$padding_idx, mode='sum') }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14