nn_soft_margin_loss function

Soft margin loss

Soft margin loss

Creates a criterion that optimizes a two-class classification logistic loss between input tensor xx and target tensor yy

(containing 1 or -1).

nn_soft_margin_loss(reduction = "mean")

Arguments

  • reduction: (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed.

Details

\mboxloss(x,y)=ilog(1+exp(y[i]x[i]))\mboxx.nelement() \mbox{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\mbox{x.nelement}()}

Shape

  • Input: ()(*) where * means, any number of additional dimensions
  • Target: ()(*), same shape as the input
  • Output: scalar. If reduction is 'none', then same shape as the input
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14