Randint_like
torch_randint_like( input, low, high, dtype = NULL, layout = NULL, device = NULL, requires_grad = FALSE )
input
: (Tensor) the size of input
will determine size of the output tensor.low
: (int, optional) Lowest integer to be drawn from the distribution. Default: 0.high
: (int) One above the highest integer to be drawn from the distribution.dtype
: (torch.dtype
, optional) the desired data type of returned Tensor. Default: if NULL
, defaults to the dtype of input
.layout
: (torch.layout
, optional) the desired layout of returned tensor. Default: if NULL
, defaults to the layout of input
.device
: (torch.device
, optional) the desired device of returned tensor. Default: if NULL
, defaults to the device of input
.requires_grad
: (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE
.memory_format=torch.preserve_format) -> Tensor
Returns a tensor with the same shape as Tensor input
filled with random integers generated uniformly between low
(inclusive) and high
(exclusive).
.. note: With the global dtype default (torch_float32
), this function returns a tensor with dtype torch_int64
.
Useful links