torch_randint_like function

Randint_like

Randint_like

torch_randint_like( input, low, high, dtype = NULL, layout = NULL, device = NULL, requires_grad = FALSE )

Arguments

  • input: (Tensor) the size of input will determine size of the output tensor.
  • low: (int, optional) Lowest integer to be drawn from the distribution. Default: 0.
  • high: (int) One above the highest integer to be drawn from the distribution.
  • dtype: (torch.dtype, optional) the desired data type of returned Tensor. Default: if NULL, defaults to the dtype of input.
  • layout: (torch.layout, optional) the desired layout of returned tensor. Default: if NULL, defaults to the layout of input.
  • device: (torch.device, optional) the desired device of returned tensor. Default: if NULL, defaults to the device of input.
  • requires_grad: (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

randint_like(input, low=0, high, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False,

memory_format=torch.preserve_format) -> Tensor

Returns a tensor with the same shape as Tensor input filled with random integers generated uniformly between low (inclusive) and high (exclusive).

.. note: With the global dtype default (torch_float32), this function returns a tensor with dtype torch_int64.

  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14