nnf_multilabel_soft_margin_loss function

Multilabel_soft_margin_loss

Multilabel_soft_margin_loss

Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input x and target y of size (N, C).

nnf_multilabel_soft_margin_loss( input, target, weight = NULL, reduction = "mean" )

Arguments

  • input: tensor (N,*) where ** means, any number of additional dimensions
  • target: tensor (N,*) , same shape as the input
  • weight: weight tensor to apply on the loss.
  • reduction: (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'

Note

It takes a one hot encoded target vector as input.

  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14