optim_ignite_rmsprop function

LibTorch implementation of RMSprop

LibTorch implementation of RMSprop

Proposed by G. Hinton in his course.

optim_ignite_rmsprop( params, lr = 0.01, alpha = 0.99, eps = 1e-08, weight_decay = 0, momentum = 0, centered = FALSE )

Arguments

  • params: (iterable): iterable of parameters to optimize or list defining parameter groups
  • lr: (float, optional): learning rate (default: 1e-2)
  • alpha: (float, optional): smoothing constant (default: 0.99)
  • eps: (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
  • weight_decay: optional weight decay penalty. (default: 0)
  • momentum: (float, optional): momentum factor (default: 0)
  • centered: (bool, optional) : if TRUE, compute the centered RMSProp, the gradient is normalized by an estimation of its variance weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

Fields and Methods

See OptimizerIgnite.

Examples

if (torch_is_installed()) { ## Not run: optimizer <- optim_ignite_rmsprop(model$parameters(), lr = 0.1) optimizer$zero_grad() loss_fn(model(input), target)$backward() optimizer$step() ## End(Not run) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14

Downloads (last 30 days):