torch_hamming_window function

Hamming_window

Hamming_window

torch_hamming_window( window_length, periodic = TRUE, alpha = 0.54, beta = 0.46, dtype = NULL, layout = NULL, device = NULL, requires_grad = FALSE )

Arguments

  • window_length: (int) the size of returned window
  • periodic: (bool, optional) If TRUE, returns a window to be used as periodic function. If False, return a symmetric window.
  • alpha: (float, optional) The coefficient α\alpha in the equation above
  • beta: (float, optional) The coefficient β\beta in the equation above
  • dtype: (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type). Only floating point types are supported.
  • layout: (torch.layout, optional) the desired layout of returned window tensor. Only torch_strided (dense layout) is supported.
  • device: (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
  • requires_grad: (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

Note

If `window_length` \eqn{=1}, the returned window contains a single value 1.
This is a generalized version of `torch_hann_window`.

hamming_window(window_length, periodic=TRUE, alpha=0.54, beta=0.46, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Hamming window function.

w[n]=αβ cos(2πnN1), w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right),

where NN is the full window size.

The input window_length is a positive integer controlling the returned window size. periodic flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like torch_stft. Therefore, if periodic is true, the NN in above formula is in fact \mboxwindow_length+1\mbox{window\_length} + 1. Also, we always have torch_hamming_window(L, periodic=TRUE) equal to torch_hamming_window(L + 1, periodic=False)[:-1]).

  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14