LibTorch implementation of Adam
It has been proposed in Adam: A Method for Stochastic Optimization.
optim_ignite_adam( params, lr = 0.001, betas = c(0.9, 0.999), eps = 1e-08, weight_decay = 0, amsgrad = FALSE )
params
: (iterable): iterable of parameters to optimize or dicts defining parameter groups
lr
: (float, optional): learning rate (default: 1e-3)
betas
: (Tuple[float, float]
, optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps
: (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay
: (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad
: (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond
(default: FALSE)
See OptimizerIgnite
.
if (torch_is_installed()) { ## Not run: optimizer <- optim_ignite_adam(model$parameters(), lr = 0.1) optimizer$zero_grad() loss_fn(model(input), target)$backward() optimizer$step() ## End(Not run) }
Useful links