nn_avg_pool3d function

Applies a 3D average pooling over an input signal composed of several input planes.

Applies a 3D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,C,D,H,W)(N, C, D, H, W), output (N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out}) and kernel_size (kD,kH,kW)(kD, kH, kW)

can be precisely described as:

nn_avg_pool3d( kernel_size, stride = NULL, padding = 0, ceil_mode = FALSE, count_include_pad = TRUE, divisor_override = NULL )

Arguments

  • kernel_size: the size of the window
  • stride: the stride of the window. Default value is kernel_size
  • padding: implicit zero padding to be added on all three sides
  • ceil_mode: when TRUE, will use ceil instead of floor to compute the output shape
  • count_include_pad: when TRUE, will include the zero-padding in the averaging calculation
  • divisor_override: if specified, it will be used as divisor, otherwise kernel_size will be used

Details

\mboxout(Ni,Cj,d,h,w)=k=0kD1m=0kH1n=0kW1\mboxinput(Ni,Cj,\mboxstride[0]×d+k,\mboxstride[1]×h+m,\mboxstride[2]×w+n)kD×kH×kW \begin{array}{ll}\mbox{out}(N_i, C_j, d, h, w) = & \sum_{k=0}^{kD-1} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} \\& \frac{\mbox{input}(N_i, C_j, \mbox{stride}[0] \times d + k, \mbox{stride}[1] \times h + m, \mbox{stride}[2] \times w + n)}{kD \times kH \times kW}\end{array}

If padding is non-zero, then the input is implicitly zero-padded on all three sides for padding number of points.

The parameters kernel_size, stride can either be:

  • a single int -- in which case the same value is used for the depth, height and width dimension
  • a tuple of three ints -- in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension

Shape

  • Input: (N,C,Din,Hin,Win)(N, C, D_{in}, H_{in}, W_{in})
  • Output: (N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out}), where
Dout=Din+2×\mboxpadding[0]\mboxkernel_size[0]\mboxstride[0]+1 D_{out} = \left\lfloor\frac{D_{in} + 2 \times \mbox{padding}[0] -\mbox{kernel\_size}[0]}{\mbox{stride}[0]} + 1\right\rfloor Hout=Hin+2×\mboxpadding[1]\mboxkernel_size[1]\mboxstride[1]+1 H_{out} = \left\lfloor\frac{H_{in} + 2 \times \mbox{padding}[1] -\mbox{kernel\_size}[1]}{\mbox{stride}[1]} + 1\right\rfloor Wout=Win+2×\mboxpadding[2]\mboxkernel_size[2]\mboxstride[2]+1 W_{out} = \left\lfloor\frac{W_{in} + 2 \times \mbox{padding}[2] -\mbox{kernel\_size}[2]}{\mbox{stride}[2]} + 1\right\rfloor

Examples

if (torch_is_installed()) { # pool of square window of size=3, stride=2 m <- nn_avg_pool3d(3, stride = 2) # pool of non-square window m <- nn_avg_pool3d(c(3, 2, 2), stride = c(2, 1, 2)) input <- torch_randn(20, 16, 50, 44, 31) output <- m(input) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14