nn_gru function

Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

nn_gru( input_size, hidden_size, num_layers = 1, bias = TRUE, batch_first = FALSE, dropout = 0, bidirectional = FALSE, ... )

Arguments

  • input_size: The number of expected features in the input x

  • hidden_size: The number of features in the hidden state h

  • num_layers: Number of recurrent layers. E.g., setting num_layers=2

    would mean stacking two GRUs together to form a stacked GRU, with the second GRU taking in outputs of the first GRU and computing the final results. Default: 1

  • bias: If FALSE, then the layer does not use bias weights b_ih and b_hh. Default: TRUE

  • batch_first: If TRUE, then the input and output tensors are provided as (batch, seq, feature). Default: FALSE

  • dropout: If non-zero, introduces a Dropout layer on the outputs of each GRU layer except the last layer, with dropout probability equal to dropout. Default: 0

  • bidirectional: If TRUE, becomes a bidirectional GRU. Default: FALSE

  • ...: currently unused.

Details

rt=σ(Wirxt+bir+Whrh(t1)+bhr)zt=σ(Wizxt+biz+Whzh(t1)+bhz)nt=tanh(Winxt+bin+rt(Whnh(t1)+bhn))ht=(1zt)nt+zth(t1) \begin{array}{ll}r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\n_t = \tanh(W_{in} x_t + b_{in} + r_t (W_{hn} h_{(t-1)}+ b_{hn})) \\h_t = (1 - z_t) n_t + z_t h_{(t-1)}\end{array}

where hth_t is the hidden state at time t, xtx_t is the input at time t, h(t1)h_{(t-1)} is the hidden state of the previous layer at time t-1 or the initial hidden state at time 0, and rtr_t, ztz_t, ntn_t are the reset, update, and new gates, respectively. σ\sigma is the sigmoid function.

Note

All the weights and biases are initialized from U(k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k})

where k=1\mboxhidden_sizek = \frac{1}{\mbox{hidden\_size}}

Inputs

Inputs: input, h_0

  • input of shape (seq_len, batch, input_size): tensor containing the features of the input sequence. The input can also be a packed variable length sequence. See nn_utils_rnn_pack_padded_sequence()

    for details.

  • h_0 of shape (num_layers * num_directions, batch, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided.

Outputs

Outputs: output, h_n

  • output of shape (seq_len, batch, num_directions * hidden_size): tensor containing the output features h_t from the last layer of the GRU, for each t. If a PackedSequence has been given as the input, the output will also be a packed sequence. For the unpacked case, the directions can be separated using output$view(c(seq_len, batch, num_directions, hidden_size)), with forward and backward being direction 0 and 1 respectively. Similarly, the directions can be separated in the packed case.

  • h_n of shape (num_layers * num_directions, batch, hidden_size): tensor containing the hidden state for t = seq_len

    Like output, the layers can be separated using h_n$view(num_layers, num_directions, batch, hidden_size).

Attributes

  • weight_ih_l[k] : the learnable input-hidden weights of the \mboxkth\mbox{k}^{th} layer (W_ir|W_iz|W_in), of shape (3*hidden_size x input_size)
  • weight_hh_l[k] : the learnable hidden-hidden weights of the \mboxkth\mbox{k}^{th} layer (W_hr|W_hz|W_hn), of shape (3*hidden_size x hidden_size)
  • bias_ih_l[k] : the learnable input-hidden bias of the \mboxkth\mbox{k}^{th} layer (b_ir|b_iz|b_in), of shape (3*hidden_size)
  • bias_hh_l[k] : the learnable hidden-hidden bias of the \mboxkth\mbox{k}^{th} layer (b_hr|b_hz|b_hn), of shape (3*hidden_size)

Examples

if (torch_is_installed()) { rnn <- nn_gru(10, 20, 2) input <- torch_randn(5, 3, 10) h0 <- torch_randn(2, 3, 20) output <- rnn(input, h0) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14