nnf_avg_pool2d function

Avg_pool2d

Avg_pool2d

Applies 2D average-pooling operation in kHkWkH * kW regions by step size sHsWsH * sW steps. The number of output features is equal to the number of input planes.

nnf_avg_pool2d( input, kernel_size, stride = NULL, padding = 0, ceil_mode = FALSE, count_include_pad = TRUE, divisor_override = NULL )

Arguments

  • input: input tensor (minibatch, in_channels , iH , iW)
  • kernel_size: size of the pooling region. Can be a single number or a tuple (kH, kW)
  • stride: stride of the pooling operation. Can be a single number or a tuple (sH, sW). Default: kernel_size
  • padding: implicit zero paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0
  • ceil_mode: when True, will use ceil instead of floor in the formula to compute the output shape. Default: FALSE
  • count_include_pad: when True, will include the zero-padding in the averaging calculation. Default: TRUE
  • divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: NULL
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14