Avg_pool2d
Applies 2D average-pooling operation in regions by step size steps. The number of output features is equal to the number of input planes.
nnf_avg_pool2d( input, kernel_size, stride = NULL, padding = 0, ceil_mode = FALSE, count_include_pad = TRUE, divisor_override = NULL )
input
: input tensor (minibatch, in_channels , iH , iW)kernel_size
: size of the pooling region. Can be a single number or a tuple (kH, kW)
stride
: stride of the pooling operation. Can be a single number or a tuple (sH, sW)
. Default: kernel_size
padding
: implicit zero paddings on both sides of the input. Can be a single number or a tuple (padH, padW)
. Default: 0ceil_mode
: when True, will use ceil
instead of floor
in the formula to compute the output shape. Default: FALSE
count_include_pad
: when True, will include the zero-padding in the averaging calculation. Default: TRUE
divisor_override
: if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: NULL
Useful links