torch_logspace function

Logspace

Logspace

torch_logspace( start, end, steps = 100, base = 10, dtype = NULL, layout = NULL, device = NULL, requires_grad = FALSE )

Arguments

  • start: (float) the starting value for the set of points
  • end: (float) the ending value for the set of points
  • steps: (int) number of points to sample between start and end. Default: 100.
  • base: (float) base of the logarithm function. Default: 10.0.
  • dtype: (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).
  • layout: (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.
  • device: (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
  • requires_grad: (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.

logspace(start, end, steps=100, base=10.0, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Returns a one-dimensional tensor of steps points logarithmically spaced with base base between \mboxbase\mboxstart{\mbox{base}}^{\mbox{start}} and \mboxbase\mboxend{\mbox{base}}^{\mbox{end}}.

The output tensor is 1-D of size steps.

Examples

if (torch_is_installed()) { torch_logspace(start=-10, end=10, steps=5) torch_logspace(start=0.1, end=1.0, steps=5) torch_logspace(start=0.1, end=1.0, steps=1) torch_logspace(start=2, end=2, steps=1, base=2) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14

Downloads (last 30 days):