Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.
gamma: (float): Multiplicative factor of learning rate decay. Default: 0.1.
last_epoch: (int): The index of last epoch. Default: -1.
Examples
if(torch_is_installed()){## Not run:# Assuming optimizer uses lr = 0.05 for all groups# lr = 0.05 if epoch < 30# lr = 0.005 if 30 <= epoch < 60# lr = 0.0005 if 60 <= epoch < 90# ...scheduler <- lr_step(optimizer, step_size =30, gamma =0.1)for(epoch in1:100){ train(...) validate(...) scheduler$step()}## End(Not run)}