torch_matrix_exp function

Matrix_exp

Matrix_exp

torch_matrix_exp(self)

Arguments

  • self: (Tensor) the input tensor.

matrix_power(input) -> Tensor

Returns the matrix exponential. Supports batched input. For a matrix A, the matrix exponential is defined as

expA=k=0Ak/k!. \exp^A = \sum_{k=0}^\infty A^k / k!.

The implementation is based on: Bader, P.; Blanes, S.; Casas, F. Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation. Mathematics 2019, 7, 1174.

Examples

if (torch_is_installed()) { a <- torch_randn(c(2, 2, 2)) a[1, , ] <- torch_eye(2, 2) a[2, , ] <- 2 * torch_eye(2, 2) a torch_matrix_exp(a) x <- torch_tensor(rbind(c(0, pi/3), c(-pi/3, 0))) x$matrix_exp() # should be [[cos(pi/3), sin(pi/3)], [-sin(pi/3), cos(pi/3)]] }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14