nn_cosine_embedding_loss function

Cosine embedding loss

Cosine embedding loss

Creates a criterion that measures the loss given input tensors x1x_1, x2x_2 and a Tensor label yy with values 1 or -1. This is used for measuring whether two inputs are similar or dissimilar, using the cosine distance, and is typically used for learning nonlinear embeddings or semi-supervised learning. The loss function for each sample is:

nn_cosine_embedding_loss(margin = 0, reduction = "mean")

Arguments

  • margin: (float, optional): Should be a number from 1-1 to 11, 00 to 0.50.5 is suggested. If margin is missing, the default value is 00.
  • reduction: (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed.

Details

\mboxloss(x,y)=1cos(x1,x2),\mboxify=1max(0,cos(x1,x2)\mboxmargin),\mboxify=1 \mbox{loss}(x, y) =\begin{array}{ll}1 - \cos(x_1, x_2), & \mbox{if } y = 1 \\\max(0, \cos(x_1, x_2) - \mbox{margin}), & \mbox{if } y = -1\end{array}
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14