torch_conv_transpose2d function

Conv_transpose2d

Conv_transpose2d

torch_conv_transpose2d( input, weight, bias = list(), stride = 1L, padding = 0L, output_padding = 0L, groups = 1L, dilation = 1L )

Arguments

  • input: input tensor of shape (\mboxminibatch,\mboxin_channels,iH,iW)(\mbox{minibatch} , \mbox{in\_channels} , iH , iW)
  • weight: filters of shape (\mboxin_channels,\mboxout_channels\mboxgroups,kH,kW)(\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kH , kW)
  • bias: optional bias of shape (\mboxout_channels)(\mbox{out\_channels}). Default: NULL
  • stride: the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1
  • padding: dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padH, padW). Default: 0
  • output_padding: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple (out_padH, out_padW). Default: 0
  • groups: split input into groups, \mboxin_channels\mbox{in\_channels} should be divisible by the number of groups. Default: 1
  • dilation: the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1

conv_transpose2d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution".

See nn_conv_transpose2d() for details and output shape.

Examples

if (torch_is_installed()) { # With square kernels and equal stride inputs = torch_randn(c(1, 4, 5, 5)) weights = torch_randn(c(4, 8, 3, 3)) nnf_conv_transpose2d(inputs, weights, padding=1) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14