Quantize_per_channel
torch_quantize_per_channel(self, scales, zero_points, axis, dtype)
self
: (Tensor) float tensor to quantizescales
: (Tensor) float 1D tensor of scales to use, size should match input.size(axis)
zero_points
: (int) integer 1D tensor of offset to use, size should match input.size(axis)
axis
: (int) dimension on which apply per-channel quantizationdtype
: (torch.dtype
) the desired data type of returned tensor. Has to be one of the quantized dtypes: torch_quint8
, torch.qint8
, torch.qint32
Converts a float tensor to per-channel quantized tensor with given scales and zero points.
if (torch_is_installed()) { x = torch_tensor(matrix(c(-1.0, 0.0, 1.0, 2.0), ncol = 2, byrow = TRUE)) torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)), torch_tensor(c(10L, 0L)), 0, torch_quint8()) torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)), torch_tensor(c(10L, 0L)), 0, torch_quint8())$int_repr() }
Useful links