torch_var_mean function

Var_mean

Var_mean

torch_var_mean(self, dim, unbiased = TRUE, keepdim = FALSE)

Arguments

  • self: (Tensor) the input tensor.
  • dim: (int or tuple of ints) the dimension or dimensions to reduce.
  • unbiased: (bool) whether to use the unbiased estimation or not
  • keepdim: (bool) whether the output tensor has dim retained or not.

var_mean(input, unbiased=TRUE) -> (Tensor, Tensor)

Returns the variance and mean of all elements in the input tensor.

If unbiased is FALSE, then the variance will be calculated via the biased estimator. Otherwise, Bessel's correction will be used.

var_mean(input, dim, keepdim=False, unbiased=TRUE) -> (Tensor, Tensor)

Returns the variance and mean of each row of the input tensor in the given dimension dim.

If keepdim is TRUE, the output tensor is of the same size as input except in the dimension(s) dim where it is of size 1. Otherwise, dim is squeezed (see torch_squeeze), resulting in the output tensor having 1 (or len(dim)) fewer dimension(s).

If unbiased is FALSE, then the variance will be calculated via the biased estimator. Otherwise, Bessel's correction will be used.

Examples

if (torch_is_installed()) { a = torch_randn(c(1, 3)) a torch_var_mean(a) a = torch_randn(c(4, 4)) a torch_var_mean(a, 1) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14

Downloads (last 30 days):