start: (float) the starting value for the set of points. Default: 0.
end: (float) the ending value for the set of points
step: (float) the gap between each pair of adjacent points. Default: 1.
dtype: (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, see ~torch.get_default_dtype. Otherwise, the dtype is inferred to be torch.int64.
layout: (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.
device: (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad: (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.