Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as:
nn_softmax(dim)
Arguments
dim: (int): A dimension along which Softmax will be computed (so every slice along dim will sum to 1).
Returns
: a Tensor of the same dimension and shape as the input with values in the range [0, 1]
Details
\mboxSoftmax(xi)=∑jexp(xj)exp(xi)
When the input Tensor is a sparse tensor then the unspecifed values are treated as -Inf.
Note
This module doesn't work directly with NLLLoss, which expects the Log to be computed between the Softmax and itself. Use LogSoftmax instead (it's faster and has better numerical properties).
Shape
Input: (∗) where * means, any number of additional dimensions