torch_conv_transpose3d function

Conv_transpose3d

Conv_transpose3d

torch_conv_transpose3d( input, weight, bias = list(), stride = 1L, padding = 0L, output_padding = 0L, groups = 1L, dilation = 1L )

Arguments

  • input: input tensor of shape (\mboxminibatch,\mboxin_channels,iT,iH,iW)(\mbox{minibatch} , \mbox{in\_channels} , iT , iH , iW)
  • weight: filters of shape (\mboxin_channels,\mboxout_channels\mboxgroups,kT,kH,kW)(\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kT , kH , kW)
  • bias: optional bias of shape (\mboxout_channels)(\mbox{out\_channels}). Default: NULL
  • stride: the stride of the convolving kernel. Can be a single number or a tuple (sT, sH, sW). Default: 1
  • padding: dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple (padT, padH, padW). Default: 0
  • output_padding: additional size added to one side of each dimension in the output shape. Can be a single number or a tuple (out_padT, out_padH, out_padW). Default: 0
  • groups: split input into groups, \mboxin_channels\mbox{in\_channels} should be divisible by the number of groups. Default: 1
  • dilation: the spacing between kernel elements. Can be a single number or a tuple (dT, dH, dW). Default: 1

conv_transpose3d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 3D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution"

See nn_conv_transpose3d() for details and output shape.

Examples

if (torch_is_installed()) { ## Not run: inputs = torch_randn(c(20, 16, 50, 10, 20)) weights = torch_randn(c(16, 33, 3, 3, 3)) nnf_conv_transpose3d(inputs, weights) ## End(Not run) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14