torch_randint function

Randint

Randint

torch_randint( low, high, size, generator = NULL, dtype = NULL, layout = NULL, device = NULL, requires_grad = FALSE, memory_format = torch_preserve_format() )

Arguments

  • low: (int, optional) Lowest integer to be drawn from the distribution. Default: 0.
  • high: (int) One above the highest integer to be drawn from the distribution.
  • size: (tuple) a tuple defining the shape of the output tensor.
  • generator: (torch.Generator, optional) a pseudorandom number generator for sampling
  • dtype: (torch.dtype, optional) the desired data type of returned tensor. Default: if NULL, uses a global default (see torch_set_default_tensor_type).
  • layout: (torch.layout, optional) the desired layout of returned Tensor. Default: torch_strided.
  • device: (torch.device, optional) the desired device of returned tensor. Default: if NULL, uses the current device for the default tensor type (see torch_set_default_tensor_type). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
  • requires_grad: (bool, optional) If autograd should record operations on the returned tensor. Default: FALSE.
  • memory_format: memory format for the resulting tensor.

randint(low=0, high, size, *, generator=NULL, out=NULL, \

dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor

Returns a tensor filled with random integers generated uniformly between low (inclusive) and high (exclusive).

The shape of the tensor is defined by the variable argument size.

.. note: With the global dtype default (torch_float32), this function returns a tensor with dtype torch_int64.

Examples

if (torch_is_installed()) { torch_randint(3, 5, list(3)) torch_randint(0, 10, size = list(2, 2)) torch_randint(3, 10, list(2, 2)) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14