Applies a 3D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size (N,C,D,H,W), output (N,C,Dout,Hout,Wout) and kernel_size
(kD,kH,kW)
can be precisely described as:
nn_max_pool3d(
kernel_size,
stride = NULL,
padding = 0,
dilation = 1,
return_indices = FALSE,
ceil_mode = FALSE
)
Arguments
kernel_size
: the size of the window to take a max over
stride
: the stride of the window. Default value is kernel_size
padding
: implicit zero padding to be added on all three sides
dilation
: a parameter that controls the stride of elements in the window
return_indices
: if TRUE
, will return the max indices along with the outputs. Useful for torch_nn.MaxUnpool3d
later
ceil_mode
: when TRUE, will use ceil
instead of floor
to compute the output shape
Details
\mboxout(Ni,Cj,d,h,w)=maxk=0,…,kD−1maxm=0,…,kH−1maxn=0,…,kW−1\mboxinput(Ni,Cj,\mboxstride[0]×d+k,\mboxstride[1]×h+m,\mboxstride[2]×w+n)
If padding
is non-zero, then the input is implicitly zero-padded on both sides for padding
number of points. dilation
controls the spacing between the kernel points. It is harder to describe, but this link
_ has a nice visualization of what dilation
does. The parameters kernel_size
, stride
, padding
, dilation
can either be:
- a single
int
-- in which case the same value is used for the depth, height and width dimension
- a
tuple
of three ints -- in which case, the first int
is used for the depth dimension, the second int
for the height dimension and the third int
for the width dimension
Shape
- Input: (N,C,Din,Hin,Win)
- Output: (N,C,Dout,Hout,Wout), where
Dout=⌊\mboxstride[0]Din+2×\mboxpadding[0]−\mboxdilation[0]×(\mboxkernel_size[0]−1)−1+1⌋
Hout=⌊\mboxstride[1]Hin+2×\mboxpadding[1]−\mboxdilation[1]×(\mboxkernel_size[1]−1)−1+1⌋
Wout=⌊\mboxstride[2]Win+2×\mboxpadding[2]−\mboxdilation[2]×(\mboxkernel_size[2]−1)−1+1⌋
Examples
if (torch_is_installed()) {
# pool of square window of size=3, stride=2
m <- nn_max_pool3d(3, stride = 2)
# pool of non-square window
m <- nn_max_pool3d(c(3, 2, 2), stride = c(2, 1, 2))
input <- torch_randn(20, 16, 50, 44, 31)
output <- m(input)
}