SELU module
Applied element-wise, as:
nn_selu(inplace = FALSE)
Arguments
inplace
: (bool, optional): can optionally do the operation in-place. Default: FALSE
Details
\mboxSELU(x)=\mboxscale∗(max(0,x)+min(0,α∗(exp(x)−1)))
with α=1.6732632423543772848170429916717 and \mboxscale=1.0507009873554804934193349852946.
More details can be found in the paper Self-Normalizing Neural Networks.
Shape
- Input: (N,∗) where
*
means, any number of additional dimensions
- Output: (N,∗), same shape as the input
Examples
if (torch_is_installed()) {
m <- nn_selu()
input <- torch_randn(2)
output <- m(input)
}