nn_multilabel_margin_loss function

Multilabel margin loss

Multilabel margin loss

Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input xx (a 2D mini-batch Tensor) and output yy (which is a 2D Tensor of target class indices). For each sample in the mini-batch:

nn_multilabel_margin_loss(reduction = "mean")

Arguments

  • reduction: (string, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed.

Details

\mboxloss(x,y)=ijmax(0,1(x[y[j]]x[i]))\mboxx.size(0) \mbox{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\mbox{x.size}(0)}

where x{0,  ,  \mboxx.size(0)1}x \in \left\{0, \; \cdots , \; \mbox{x.size}(0) - 1\right\}, \ y{0,  ,  \mboxy.size(0)1}y \in \left\{0, \; \cdots , \; \mbox{y.size}(0) - 1\right\}, \ 0y[j]\mboxx.size(0)10 \leq y[j] \leq \mbox{x.size}(0)-1, \ and iy[j]i \neq y[j] for all ii and jj. yy and xx must have the same size.

The criterion only considers a contiguous block of non-negative targets that starts at the front. This allows for different samples to have variable amounts of target classes.

Shape

  • Input: (C)(C) or (N,C)(N, C) where N is the batch size and C

    is the number of classes.

  • Target: (C)(C) or (N,C)(N, C), label targets padded by -1 ensuring same shape as the input.

  • Output: scalar. If reduction is 'none', then (N)(N).

Examples

if (torch_is_installed()) { loss <- nn_multilabel_margin_loss() x <- torch_tensor(c(0.1, 0.2, 0.4, 0.8))$view(c(1, 4)) # for target y, only consider labels 4 and 1, not after label -1 y <- torch_tensor(c(4, 1, -1, 2), dtype = torch_long())$view(c(1, 4)) loss(x, y) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14