nn_init_sparse_ function

Sparse initialization

Sparse initialization

Fills the 2D input Tensor as a sparse matrix, where the non-zero elements will be drawn from the normal distribution as described in Deep learning via Hessian-free optimization - Martens, J. (2010).

nn_init_sparse_(tensor, sparsity, std = 0.01)

Arguments

  • tensor: an n-dimensional Tensor
  • sparsity: The fraction of elements in each column to be set to zero
  • std: the standard deviation of the normal distribution used to generate the non-zero values

Examples

if (torch_is_installed()) { ## Not run: w <- torch_empty(3, 5) nn_init_sparse_(w, sparsity = 0.1) ## End(Not run) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14