nn_avg_pool1d function

Applies a 1D average pooling over an input signal composed of several input planes.

Applies a 1D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,C,L)(N, C, L), output (N,C,Lout)(N, C, L_{out}) and kernel_size kk

can be precisely described as:

nn_avg_pool1d( kernel_size, stride = NULL, padding = 0, ceil_mode = FALSE, count_include_pad = TRUE )

Arguments

  • kernel_size: the size of the window
  • stride: the stride of the window. Default value is kernel_size
  • padding: implicit zero padding to be added on both sides
  • ceil_mode: when TRUE, will use ceil instead of floor to compute the output shape
  • count_include_pad: when TRUE, will include the zero-padding in the averaging calculation

Details

\mboxout(Ni,Cj,l)=1km=0k1\mboxinput(Ni,Cj,\mboxstride×l+m) \mbox{out}(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1}\mbox{input}(N_i, C_j, \mbox{stride} \times l + m)

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.

The parameters kernel_size, stride, padding can each be an int or a one-element tuple.

Shape

  • Input: (N,C,Lin)(N, C, L_{in})
  • Output: (N,C,Lout)(N, C, L_{out}), where
Lout=Lin+2×\mboxpadding\mboxkernel_size\mboxstride+1 L_{out} = \left\lfloor \frac{L_{in} +2 \times \mbox{padding} - \mbox{kernel\_size}}{\mbox{stride}} + 1\right\rfloor

Examples

if (torch_is_installed()) { # pool with window of size=3, stride=2 m <- nn_avg_pool1d(3, stride = 2) m(torch_randn(1, 1, 8)) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14