nn_softmin function

Softmin

Softmin

Applies the Softmin function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0, 1] and sum to 1. Softmin is defined as:

nn_softmin(dim)

Arguments

  • dim: (int): A dimension along which Softmin will be computed (so every slice along dim will sum to 1).

Returns

a Tensor of the same dimension and shape as the input, with values in the range [0, 1].

Details

\mboxSoftmin(xi)=exp(xi)jexp(xj) \mbox{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}

Shape

  • Input: ()(*) where * means, any number of additional dimensions
  • Output: ()(*), same shape as the input

Examples

if (torch_is_installed()) { m <- nn_softmin(dim = 1) input <- torch_randn(2, 2) output <- m(input) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14