torch_div function

Div

Div

torch_div(self, other, rounding_mode)

Arguments

  • self: (Tensor) the input tensor.

  • other: (Number) the number to be divided to each element of input

  • rounding_mode: (str, optional) – Type of rounding applied to the result:

    • NULL - default behavior. Performs no rounding and, if both input and other are integer types, promotes the inputs to the default scalar type. Equivalent to true division in Python (the / operator) and NumPy’s np.true_divide.
    • "trunc" - rounds the results of the division towards zero. Equivalent to C-style integer division.
    • "floor" - rounds the results of the division down. Equivalent to floor division in Python (the // operator) and NumPy’s np.floor_divide.

div(input, other, out=NULL) -> Tensor

Divides each element of the input input with the scalar other and returns a new resulting tensor.

Each element of the tensor input is divided by each element of the tensor other. The resulting tensor is returned.

\mboxouti=\mboxinputi\mboxotheri \mbox{out}_i = \frac{\mbox{input}_i}{\mbox{other}_i}

The shapes of input and other must be broadcastable . If the torch_dtype of input and other differ, the torch_dtype of the result tensor is determined following rules described in the type promotion documentation . If out is specified, the result must be castable to the torch_dtype of the specified output tensor. Integral division by zero leads to undefined behavior.

Warning

Integer division using div is deprecated, and in a future release div will perform true division like torch_true_divide(). Use torch_floor_divide() to perform integer division, instead.

\mboxouti=\mboxinputi\mboxother \mbox{out}_i = \frac{\mbox{input}_i}{\mbox{other}}

If the torch_dtype of input and other differ, the torch_dtype of the result tensor is determined following rules described in the type promotion documentation . If out is specified, the result must be castable to the torch_dtype of the specified output tensor. Integral division by zero leads to undefined behavior.

Examples

if (torch_is_installed()) { a = torch_randn(c(5)) a torch_div(a, 0.5) a = torch_randn(c(4, 4)) a b = torch_randn(c(4)) b torch_div(a, b) }
  • Maintainer: Daniel Falbel
  • License: MIT + file LICENSE
  • Last published: 2025-02-14