trafo1.0.1 package

Estimation, Comparison and Selection of Transformations

as.data.frame.trafo

Data frame with transformed variables

assumptions

First check of assumptions to find suitable transformations

bickeldoksum

Bickel-Doksum transformation for linear models

boxcox

Box-Cox transformation for linear models

boxcoxshift

Box-Cox shift transformation for linear models

diagnostics

Diagnostics for fitted models

diagnostics.trafo_compare

Diagnostics for two differently transformed models

diagnostics.trafo_lm

Diagnostics for an untransformed and a transformed model

diagnostics_internal

Internal diagnostic functions

divergence_min_CvM

Divergence minimization by Cramer von Mises

divergence_min_KL

Divergence minimization by Kullback-Leibler

divergence_min_KS

Divergence minimization by Kolmogorov Smirnov

dual

Dual transformation for linear models

est_lm

Estimation of optimal transformation parameter - lm

est_lme

Box Cox Estimation - lme

estim_lm

Wrapper function for estimation methods - linear models

estim_lme

Wrapper function for estimation methods - linear mixed models

get_modelt

Function that fits model with transformed dependent variable

get_transformed

Function that bundles the return of a trafo object

glog

Glog transformation for linear models

gpower

Gpower transformation for linear models

kurtosis_min

Kurtosis

logshift

Log shift transformation for linear models

logshiftopt

Log shift opt transformation for linear models

logtrafo

Log transformation for linear models

manly

Manly transformation for linear models

ML

Maximum Likelihood

modulus

Modulus transformation for linear models

neglog

Neg log transformation for linear models

oneparam.lm

One parameter transformations for linear models

oneparam

One parameter transformations

plot.trafo_compare

Plots for linear models with transformed dependent variable

plot.trafo_lm

Plot for regression models with untransformed and transformed dependen...

plot_trafolm

Plot for optimal transformation parameter - linear models

print.diagnostics.trafo_compare

Prints diagnostics of two trafo objects

print.diagnostics.trafo_lm

Prints diagnostics of an untransformed and a transformed model

print.summary.trafo_compare

Prints summary of trafo_compare objects

print.summary.trafo_lm

Print summary trafo

print.trafo

Prints object of type trafo

print.trafo_compare

Prints object of type trafo_compare

print.trafo_lm

Prints object of type trafo_lm

reciprocal

Reciprocal transformation for linear models

skewness_min

Skewness minimization by Molina

sqrtshift

Square-root shift transformation for linear models

summary.trafo_compare

Summary for two differently transformed models

summary.trafo_lm

Summary for linear models with untransformed and transformed dependent...

trafo

An R package supporting the selection of a suitable transformation

trafo_compare

Compares linear models with transformed dependent variable

trafo_lm

Fits transformed linear models

woparam.lm

Transformations without parameter for linear models

woparam

Transformations without transformation parameter

yeojohnson

Yeo-Johnson transformation for linear models

Estimation, selection and comparison of several families of transformations. The families of transformations included in the package are the following: Bickel-Doksum (Bickel and Doksum 1981 <doi:10.2307/2287831>), Box-Cox, Dual (Yang 2006 <doi:10.1016/j.econlet.2006.01.011>), Glog (Durbin et al. 2002 <doi:10.1093/bioinformatics/18.suppl_1.S105>), gpower (Kelmansky et al. 2013 <doi:10.1515/sagmb-2012-0030>), Log, Log-shift opt (Feng et al. 2016 <doi:10.1002/sta4.104>), Manly, modulus (John and Draper 1980 <doi:10.2307/2986305>), Neglog (Whittaker et al. 2005 <doi:10.1111/j.1467-9876.2005.00520.x>), Reciprocal and Yeo-Johnson. The package simplifies to compare linear models with untransformed and transformed dependent variable as well as linear models where the dependent variable is transformed with different transformations. Furthermore, the package employs maximum likelihood approaches, moments optimization and divergence minimization to estimate the optimal transformation parameter.

  • Maintainer: Ann-Kristin Kreutzmann
  • License: GPL-2
  • Last published: 2018-11-27