estim_lm function

Wrapper function for estimation methods - linear models

Wrapper function for estimation methods - linear models

estim_lm(lambda, y, x, method, trafo, custom_func, custom_func_std)

Arguments

  • lambda: transformation parameter
  • y: vector of response variables
  • x: matrix of regressors
  • method: a character string. Different estimation methods can be used for the estimation of the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml". In case of no and log transformation "NA" can be selected since no optimization is necessary for these two transformation types.
  • trafo: a character string that selects the transformation.
  • custom_func: a function that determines a customized transformation.
  • custom_func_std: a function that determines a customized standard transformation.

Returns

Depending on the selected method the return is a log likelihood, a skewness, a pooled skewness or a Kolmogorov-Smirnov, Cramer von Mises or Kullback Leibler divergence.

  • Maintainer: Ann-Kristin Kreutzmann
  • License: GPL-2
  • Last published: 2018-11-27

Useful links