predicttsir function

predicttsir

predicttsir

function to predict incidence and susceptibles using the tsir model. This is different than simulatetsir as you are inputting parameters as vectors. The output is a data frame I and S with mean and confidence intervals of predictions.

predicttsir(times, births, beta, alpha, S0, I0, nsim, stochastic)

Arguments

  • times: The time vector to predict the model from. This assumes that the time step is equal to IP
  • births: The birth vector (of length length(times) or a single element) where each element is the births in that given (52/IP) time step
  • beta: The length(52/IP) beta vector of contact.
  • alpha: A single numeric which acts as the homogeniety parameter.
  • S0: The starting initial condition for S. This should be greater than one, i.e. not a fraction.
  • I0: The starting initial condition for I. This should be greater than one, i.e. not a fraction.
  • nsim: The number of simulations to perform.
  • stochastic: A TRUE / FALSE argument where FALSE is the deterministic model, and TRUE is a negative binomial distribution.

Examples

## Not run: require(kernlab) require(ggplot2) require(kernlab) require(tsiR) London <- twentymeas$London London <- subset(London, time > 1950) IP <- 2 ## first estimate paramters from the London data parms <- estpars(data=London, IP=2, regtype='gaussian') plotbeta(parms) ## now lets predict forward 20 years using the mean birth rate, ## starting from rough initial conditions births <- min(London$births) times <- seq(1965,1985, by = 1/ (52/IP)) S0 <- parms$sbar I0 <- 1e-5*mean(London$pop) pred <- predicttsir(times=times,births=births, beta=parms$contact$beta,alpha=parms$alpha, S0=S0,I0=I0, nsim=50,stochastic=T) ## plot this prediction ggplot(pred$I,aes(time,mean))+geom_line()+geom_ribbon(aes(ymin=low,ymax=high),alpha=0.3) ## End(Not run)
  • Maintainer: Alexander D. Becker
  • License: GPL-3
  • Last published: 2021-01-20

Useful links