denpoly function

Coefficients of the Denominator Polynomial for H~k\tilde{H}_k and C~k\tilde{C}_k

Coefficients of the Denominator Polynomial for H~k\tilde{H}_k and C~k\tilde{C}_k

This function computes the coefficients of the denominator polynomial for the elements of H~k\tilde{H}_k and C~k\tilde{C}_k. The function returns a vector containing the coefficients in descending powers of n~\tilde{n}, with the last element being the coefficient of n~\tilde{n}.

denpoly(k, alpha = 2)

Arguments

  • k: The order of the polynomial (a positive integer)

  • alpha: The type of Wishart distribution (α=2/β)(\alpha=2/\beta):

    • 1/2: Quaternion Wishart
    • 1: Complex Wishart
    • 2: Real Wishart (default)

Returns

A vector containing the coefficients of the denominator polynomial in descending powers of n~\tilde{n} for the elements of H~k\tilde{H}_k and Ck\mathcal{C}_k.

Examples

# Example 1: Compute the denominator polynomial for k = 3, alpha = 2 # Output corresponds to the polynomial n1^5-3n1^4-8n1^3+12n1^2+16n1, # where n1 is \eqn{\tilde{n}} denpoly(3) # Example 2: Compute the denominator polynomial for k = 2, alpha = 1 # Output corresponds to the polynomial n1^3-n1, where n1 is \eqn{\tilde{n}} denpoly(2, alpha = 1)
  • Maintainer: Raymond Kan
  • License: MIT + file LICENSE
  • Last published: 2024-08-27

Useful links