dkmap function

Mapping Matrix that maps Qk+1Q_{k+1} to QkQ_k for a beta-Wishart Distribution, but without nn on the diagonal

Mapping Matrix that maps Qk+1Q_{k+1} to QkQ_k for a beta-Wishart Distribution, but without nn on the diagonal

This function computes the matrix that maps Qk+1Q_{k+1} to QkQ_k when WWmβ(n,Σ)W \sim W_m^{\beta}(n, \Sigma).

dkmap(k, alpha = 2)

Arguments

  • k: The order of the mapping matrix DkD_k (a positive integer)

  • alpha: The type of beta-Wishart distribution (α=2/β\alpha=2/\beta):

    • 1/2: Quaternion Wishart
    • 1: Complex Wishart
    • 2: Real Wishart (default)

Returns

A matrix that maps Qk+1Q_{k+1} to QkQ_k, but without nn on the diagonal.

Examples

# Example 1: Compute the mapping matrix for k = 2, real Wishart dkmap(2) # Example 2: Compute the mapping matrix for k = 1, complex Wishart dkmap(1, 1) # Example 3: Compute the mapping matrix for k = 2, quaternion Wishart dkmap(2, 1/2)
  • Maintainer: Raymond Kan
  • License: MIT + file LICENSE
  • Last published: 2024-08-27

Useful links