iwish_ps function

Inverse of a Coefficient Matrix H~k\tilde{\mathcal{H}}_k

Inverse of a Coefficient Matrix H~k\tilde{\mathcal{H}}_k

This function computes the inverse of a coefficient matrix H~k\tilde{\mathcal{H}}_k

that allows us to compute the expected value of a power-sum symmetric function of W1W^{-1}, where WWmβ(n,Σ)W \sim W_m^{\beta}(n,\Sigma).

iwish_ps(k, alpha = 2)

Arguments

  • k: The order of the H~k\tilde{\mathcal{H}}_k matrix (a positive integer)

  • alpha: The type of Wishart distribution (α=2/β\alpha = 2/\beta):

    • 1/2: Quaternion Wishart
    • 1: Complex Wishart
    • 2: Real Wishart (default)

Returns

Inverse of a coefficient matrix H~k\tilde{\mathcal{H}}_k that allows us to compute the expected value of a power-sum symmetric function of W1W^{-1}, where WWmβ(n,Σ)W \sim W_m^{\beta}(n,\Sigma). The matrix is represented as a 3-dimensional array where each slice along the third dimension represents a coefficient matrix of the polynomial in descending powers of n~\tilde{n}.

Examples

# Example 1: iwish_ps(3) # For real Wishart distribution with k = 3 # Example 2: iwish_ps(4, 1) # For complex Wishart distribution with k = 4 # Example 3: iwish_ps(2, 1/2) # For quaternion Wishart distribution with k = 2
  • Maintainer: Raymond Kan
  • License: MIT + file LICENSE
  • Last published: 2024-08-27

Useful links